
APPENDIX

In Appendix, we introduce technical details of our system
implementation, training and experiments. The Appendix
includes three parts for each, as listed below:

• A. Details of High-level Reasoning and Task Ex-
ecution: the implementation details of our high-level
system, including the VLM prompts, sub-task set and
the deployed algorithm.

• B. Training Details of Low-level Locomotion Control
Policy: the training details of our low-level locomotion
control policy, including the problem definition, reward
function, training strategy and parameters.

• C. Extra Experiments Details of the Low-level Lo-
comotion: the supplementary experiment of our low-
level locomotion control policy, including the metrics,
comparison with baselines and ablation studies.

A. Details of High-level Reasoning and Task Execution

1) VLM Details and Prompts: We use pretrained LLaVA-
34B for VLM inference. The VLM takes RGB images at a
resolution of 848×480 and instruction prompts as input. The
prompts given for different stages are listed below:

1) Planning “Ignore anything on the wall. You are a robot
dog. The intermediation may be a stair, a ramp, a gap, or
a door frame. The task is task. First answer the question:
1. What is the only intermediation you need to cross or
climb to finish the task? Based on previous questions,
decompose this task into a sequence of subtasks. The
subtask is (Action, Ending). Action is one of [‘move’,
‘climb’]. The ending is one of [‘facing intermediation’,
‘across intermediation’, and ‘to the goal’]. Replace the
intermediation with the answer to question 1.”

2) Perception “Where is the intermediation? Answer in
[x0,y0,x1,y1] format, don’t say anything else.”

3) Discriminator “Is there any intermediation? Just an-
swer yes or no.” or “Is the task finished at current state?”

Note after the output of prompt 1, all the intermediation in
prompts will be replaced by the specific intermediation in
answer 1. One example output with a specific terrain can be
found in Fig. 2

2) Sub-task Set and Deployment Details: The sub-task is
defined as an (Action, Ending) pair. Action is one of [‘move’,
‘climb’], Ending is one of [‘facing intermediation’, ‘across
intermediation’, and ‘to the goal’]. In real deployments, we
find the VLM does not output irrational sub-tasks “climb
facing intermediation” and “climb to the goal”, so only four
pairs are used: “Move facing intermediation”, “Move across
intermediation”, “Move to the goal”, and “Climb across inter-
mediation”. The sub-task execution module can access sub-
task instructions from VLM, RGB-D images, odometry from
VIO SLAM, and output a velocity command (𝑉𝑥 ,𝑉𝑦 ,𝑉𝑦𝑎𝑤) to
the PAS control policy. The sub-tasks are executed in a closed
loop and double-checked by VLM. While one sub-task is Not
at the End Point judged by VLM, the system consistently
executes it.

(xl+xr)/2, (yl+yr)/2

RGB Image Aligned Depth Image

(X,Y,Z) in camera frame

Fig. 8: Illustration of the trajectory refinement module com-
bined with depth image.

Algorithm 1: “Move facing intermediation”. The VLM is
capable of detecting intermediations and outputting accurate
bounding boxes for them. Combining with a depth image input,
we can obtain the exact 3D position of the intermediation

by {𝑋,𝑌, 𝑍} = {
(𝑖− 𝑥0) · 𝑑𝑖 𝑗

𝑓𝑥
,
(𝑗 − 𝑦0) · 𝑑𝑖 𝑗

𝑓𝑦
, 𝑑𝑖 𝑗 }, and output an

accurate sub-goal based on that, as shown in Fig. 8.
Algorithm 2: “Move across intermediation”. Move for-

ward to the sub-goal located at the same horizontal line as the
final goal.

Algorithm 3: “Move freely to goal”. Integrated with the
localization module, move freely to the final goal until the
distance between the robot and the sub-goal is less than 0.1m.

Algorithm 4: “Climb across intermediation”. The gen-
eralizable locomotion control policy consistently classifies
whether the robot is on the plane or is crossing an intermedia-
tion, which is discussed in detail in Section V-B.6. If the terrain
estimator identifies sudden changes from terrain to plane, the
“done” signal is thrown by the task execution module.

Algorithm 1 Move facing intermediation
Input: RGB image 𝐶; Aligned depth image 𝐷; Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

Query VLM for intermediation bounding box
{𝑥𝑙 , 𝑥𝑟 , 𝑦𝑙 , 𝑦𝑟 };
Obtain intermediation center in pixel {𝑥0, 𝑦0} = {(𝑥𝑙 +
𝑥𝑟)/2, (𝑦𝑙 + 𝑦𝑟)/2};
while Not 𝑥0 < 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

Obtain intermediation center in real 3D position

{𝑋,𝑌, 𝑍} = {
(𝑖− 𝑥0) · 𝑑𝑖 𝑗

𝑓𝑥
,
(𝑗 − 𝑦0) · 𝑑𝑖 𝑗

𝑓𝑦
, 𝑑𝑖 𝑗 };

Transfer sub-goal {0, 𝑋,0} in robot frame to fixed world
frame;

while Distance error greater than 0.1m do
Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control

based on the sub-goal;
Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;

end while
Query VLM for intermediation bounding box

{𝑥𝑙 , 𝑥𝑟 , 𝑦𝑙 , 𝑦𝑟 };
Obtain intermediation center in pixel {𝑥0, 𝑦0} = {(𝑥𝑙 +

𝑥𝑟)/2, (𝑦𝑙 + 𝑦𝑟)/2};
end while

Algorithm 2 Move across intermediation
Input: Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

while Not invisible of the intermediation judged by VLM
discriminator do

Obtain final goal 𝑋,𝑌, 𝑍 in robot frame;
Transfer sub-goal {𝑋,0,0} in robot frame to fixed world

frame;
while Distance error greater than 0.1m do

Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control
based on the sub-goal;

Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;
end while

end while

Algorithm 3 Move freely to the goal
Input: Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

while Not finished the task defined by language L judged
by VLM discriminator do

Obtain final goal {𝑋,𝑌, 𝑍};
while Distance error greater than 0.1m do

Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control
based on the final goal;

Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;
end while

end while

Algorithm 4 Climb across intermediation
Input: Terrain Classification; Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

while Not invisible of the intermediation judged by VLM
discriminator do

𝑇𝑒𝑟𝑟𝑎𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝐶𝑜𝑢𝑛𝑡 = 0;
while 𝐶𝑜𝑢𝑛𝑡 < 2 do

Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control
to keep moving and facing straight;

Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;
𝐶𝑜𝑢𝑛𝑡 = 𝐶𝑜𝑢𝑛𝑡 + 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ⊕

𝐿𝑎𝑠𝑡 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛;
end while

end while

B. Training Details of Low-level Locomotion Control Policy

We use the IsaacGym simulator [65] for policy training and
deploy 4,096 quadruped robot agents. The training process
has two steps as shown in Fig. 4. Both steps use the Proximal
Policy Optimization (PPO) [66] method, and both are trained
in 40,000 iterations of exploration and learning. The control
policy within the simulator operates at a frequency of 50 Hz.

1) Problem Definition: We decompose the locomotion
control problem into discrete locomotion dynamics. The
environment can be fully represented as 𝒙𝑡 at each time step 𝑡,
with a discrete time step 𝑑𝑡 = 0.02𝑠.

State Space: The entire training process includes the fol-
lowing three types of observation information: proprioception
𝒑𝑡 ∈ R45, privileged state 𝒔𝑡 ∈ R4, and terrain information
𝒕𝑡 ∈ R187. Proprioception 𝒑𝑡 ∈ R45 contains gravity vector
𝒈𝑝
𝑡 ∈ R3 and base angular velocity 𝝎𝑝

𝑡 ∈ R3 from IMU,
velocity command 𝒄𝒕 =

(
𝑣cmd
𝑥 , 𝑣cmd

𝑦 ,𝜔cmd
𝑧

)
∈R3, joint positions

𝜽 𝑝
𝑡 ∈ R12, joint velocities 𝜽′ 𝑝𝑡 ∈ R12, last action 𝒂𝑝

𝑡−1 ∈ R12.
Privileged state 𝒔𝑡 ∈ R4 contains base linear velocity 𝒗𝑝𝑡 ∈
R3 and the ground friction 𝝁𝑝

𝑡 ∈ R1. Note that although
the base linear velocity can be obtained by integrating the
acceleration data from IMU, it has significant errors and
accumulates errors over time, hence it cannot be used in the real
deployment. Terrain information contains height measurement
𝒊𝑒𝑡 ∈ R187, which includes 187 height values sampled from
the grid surrounding the robot, refer to the yellow point
grid surrounding the robot in Fig. 4. We have two training
steps as shown in Fig. 4. Policy in the first step uses all
information 𝒑𝑡 ∈ R45, 𝒔𝑡 ∈ R4, and 𝒕𝑡 ∈ R187 as observation.
In the second step and in the real deployment, the policy uses
only proprioception 𝒑𝑡 ∈ R45 as observation.

Action Space: The policy outputs the target positions of
12 joints as the action space 𝒂𝑡 ∈ R12. During real robot
deployment, the expected joint positions are sent to the lower-
level joint PD controllers (𝐾𝑝 = 40,𝐾𝑑 = 0.5) for execution
via the ROS (Robot Operating System) platform.

2) Reward Function: The reward function is composed
of four components: task reward 𝑟𝑇𝑡 , survival reward 𝑟𝐴𝑡 ,
performance reward 𝑟𝐸𝑡 , and style reward 𝑟𝑆𝑡 . And the total
reward is the sum of them 𝑟𝑡 = 𝑟

𝑇
𝑡 + 𝑟𝐴𝑡 + 𝑟𝐸𝑡 + 𝑟𝑆𝑡 . Specifically,

the task reward mainly consists of the tracking of linear and
angular velocities, formulated as the exponent of the velocity
tracking error; the alive reward gives a reward to the robot for
each step to encourage it not to fall over; the performance
reward includes energy consumption, joint velocity, joint
acceleration, and angular velocity stability; the style reward
includes the time the feet are off the ground and the balance
of the forces on the feet, with the hope that the robot can walk
with a more natural gait. The details of each reward function
are shown in Table V.

3) Termination Conditions: We terminate the episode
when the robot base’s roll angle (the rotation around the
forward axis) exceeds 0.8 rad, the robot base’s pitch angle (the
rotation around the vertical axis) exceeds 1.0 rad, or the robot’s
position does not change significantly for over 1 second. If the
robot does not trigger any termination conditions within 20
seconds or successfully arrives at the edge of one terrain, we
also finish this episode and mark this episode as time out.

4) Terrain Curriculum: Previous work [67] has demon-
strated that training quadruped robot on various terrains can re-
sult in high generalizability and robustness to different ground
surfaces. Due to the instability of reinforcement learning in
its early stages, it is challenging for robots to directly acquire
locomotion skills on complex terrains. Therefore, we employ
and refine the “terrain curriculum” approach proposed in [68].
Specifically, we create 80 different terrains, distributed across
an 8 × 10 grid. The terrains are divided into 8 categories,

TABLE V: Reward Function

Type Item Formula Weight

Task Lin vel exp
(
−∥vdes

𝑡 ,𝑥𝑦 −v𝑡 ,𝑥𝑦 ∥2/0.25
)

3.0

Ang vel exp
(
−∥𝜔des

𝑡 ,𝑧 −𝜔𝑡 ,𝑧 ∥2/0.25
)

1.0

Safety Alive 1 1.0

Performance

Energy ∥ ¤q∥2 · ∥𝜏∥2 −1×10−6

Joint vel ∥ ¤q∥2 −0.002
Joint acc ∥ ¥q∥2 −2×10−6

Ang vel Stability (∥𝜔𝑡 ,𝑥 ∥2 + ∥𝜔𝑡 ,𝑦 ∥2) −0.2

Style Feet in air
∑3

𝑖=0
(
t𝑎𝑖𝑟 ,𝑖 −0.3

)
+10 ·min

(
0.5− t𝑎𝑖𝑟 ,𝑖 ,0

)
0.05

Balance ∥𝐹 𝑓 𝑒𝑒𝑡 ,0 +𝐹 𝑓 𝑒𝑒𝑡 ,2 −𝐹 𝑓 𝑒𝑒𝑡 ,1 −𝐹 𝑓 𝑒𝑒𝑡 ,3∥2 −2×10−5

with each type ranging from easy to difficult, consisting of
10 variations. Each terrain measures 8 meters in length and
width. The first category consists of ascending stairs, with
stair heights uniformly increasing from 0 to 0.2 meters, and
a fixed stair width of 0.3 meters, designed for training in
climbing stairs continuously. The second category features
descending stairs, with stair heights uniformly increasing
from 0 to 0.2 meters, and a fixed stair width of 0.3 meters,
intended for training in descending stairs continuously. The
third category comprises ascending platforms, with platform
heights uniformly increasing from 0.16 to 0.22 meters, and
platform widths varying randomly from 0.8 to 1.5 meters,
used for training to step up onto higher platforms. The fourth
category includes descending platforms, with platform heights
uniformly increasing from 0.16 to 0.22 meters, and platform
widths varying randomly from 0.8 to 1.5 meters, for training
to jump down from higher platforms. The fifth category is
for ascending ramps, with ramp angles uniformly increasing
from 0 to 30 degrees, aimed at training for climbing up ramps.
The sixth category is for descending ramps, with ramp angles
uniformly increasing from 0 to 30 degrees, aimed at training
for descending ramps. The seventh category consists of flat
ground with no obstacles, for training in walking on level
surfaces. The eighth category is rough terrain, with the addition
of Perlin noise with amplitudes uniformly increasing from 0
to 0.15 meters, for training on uneven surfaces such as rocky
roads.

5) Dynamic Randomization: To enhance the robustness
and reduce the gap between the simulation and reality, we have
a series of randomizations including the mass, the center of
gravity position, the initial joint positions, the motor strength,
and the coefficient of friction, all of which are subject to
random variation within a preset range. Details are in Table VI.

In addition, the observation information obtained by the
robot’s sensors is also added with random Gaussian noise to
simulate the sensor errors that may occur in a real environment.
Details are in Table VII.

Furthermore, we randomly change the robot’s velocity
commands every 5 seconds and apply random external forces
to the robot every 9 seconds.

TABLE VI: Dynamic randomization

Parameters Range Unit

Base mass [0, 3] 𝑘𝑔

Mass position of X axis [-0.2, 0.2] 𝑚

Mass position of Y axis [-0.1, 0.1] 𝑚

Mass position of Z axis [-0.05, 0.05] 𝑚

Friction [0, 2] -
Initial joint positions [0.5, 1.5] ×nominal value 𝑟𝑎𝑑

Initial base velocity [-1.0, 1.0] (all directions) 𝑚/𝑠
Motor strength [0.9, 1.1] ×nominal value -

TABLE VII: Gaussian noise

Observation Gaussian Noise Amplitude Unit

Linear velocity 0.05 𝑚/𝑠
Angular velocity 0.2 𝑟𝑎𝑑/𝑠

Gravity 0.05 𝑚/𝑠2
Joint position 0.01 𝑟𝑎𝑑

Joint velocity 1.5 𝑟𝑎𝑑/𝑠

6) Terrain Classification: After finishing the training pro-
cess of the PAS control policy, we freeze all the network
weight in the PAS control policy and add head to output a
boolean terrain classification. The input of the network is 𝒑𝑡 ,
𝒔𝑡 , 𝒕𝑡 , and only to predict robot is on the plane or not (on the
intermediation). We use BCE Loss as the loss function.

7) Network Architecture: In the first step of training, the
terrain encoder 𝐸𝑡 and the low-level MLP 𝐸𝑙𝑜𝑤 are both
multilayer perceptrons (MLPs). In the second step of training,
the estimator consists of a recurrent neural network (RNN)
and a multilayer perceptron (MLP), with the type of recurrent
neural network being a Long Short-Term Memory network
(LSTM). The specific details of the network are shown in
Table VIII.

TABLE VIII: Details of the network architecture

Network Input Hidden layers Output

𝐸𝑡 (MLP) 𝒕𝑡 [128, 64] 𝒕𝑙𝑡
𝐸𝑙𝑜𝑤(MLP) 𝒑𝑡 , 𝒔𝑡 , 𝒕𝑡 [512, 256, 128] 𝒂𝑡

Estimator LSTM 𝒑𝑡 [256, 256] 𝒉𝑡

Estimator MLP 𝒉𝑡 [256, 128] 𝒑𝑡
Critic(MLP) 𝒑𝑡 , 𝒔𝑡 , 𝒕𝑡 [512, 256, 128] 𝑽 𝑡

Terrain Estimator (MLP) 𝒑𝑡 , 𝒔𝑡 , 𝒕𝑡 [256, 128] 𝒄𝑡

Exponential probability annealing Cosine probability annealing Linear probability annealing

Fig. 9: Annealing schedule of different settings. Exponential annealing is fast initially and then slows down, cosine annealing is
slow initially and then speeds up, and linear annealing is uniform all the process.

8) Hyperparameters: The hyperparameters of the PPO
algorithm are shown in the Table. IX:

TABLE IX: PPO Hyperparameters

Hyperparameter Value

clip min std 0.05
clip param 0.2
desired kl 0.01

entropy coef 0.01
gamma 0.99

lam 0.95
learning rate 0.001

max grad norm 1
num mini batch 4

num steps per env 24

C. Extra Experiments Details of the Low-level Locomotion
1) Metric of Velocity Tracking Ratio:

Linear velocity tracking ratio = exp(−
∥𝑣𝑥,𝑦 − 𝑣target

𝑥,𝑦 ∥2
2

0.25
),

Angular velocity tracking ratio = exp(−
∥𝜔yaw −𝜔target

yaw ∥2
2

0.25
).

2) Comparison Experiments:
• RMA [1]: A 1D-CNN is used as an adaptation module,

employing asynchronously. The teacher-student training
framework is used.

• IL [55]: The first step of training is the same, the second
step of training employs the teacher-student framework
for imitation learning. The network architectures are the
same.

• Built-in MPC: The built-in Model Predictive Control
(MPC) controller on the Unitree A1 robot (only in
physical experiments).

• Blind: The network architecture is the same as that in the
second step of training. Trained only using proprioception
directly in one step.

• Concurrent [64]: The policy was trained concurrently
with a state estimation network. The training process did
not include any input regarding the terrain.

3) Ablation Experiments:
• Exp 0.9998: The selection probability decreases expo-

nentially, with a base of 0.9998.
• Exp 0.9995: The selection probability decreases expo-

nentially, with a base of 0.9995.
• No anneal: The selection probability is set to zero from

the beginning, and the predicted hidden state values are
used exclusively.

• Cosine: The selection probability decreases in the shape
of the cosine function on the interval [0, 𝜋]. The rate of
probability decrease is initially slow and then accelerates.

• Linear: The selection probability decreases in a linear
function. The probability decreases uniformly.

Specifically, the annealing schedule of exponent, cosine, and
linear is shown in Fig. 9.

