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Reach the goal on the platform. Decompose 
this task into a sequence of subtasks. 

①(move, facing ramp) ②(climb, across ramp) ③(move, to the goal)

Fig. 1: SARO achieves space-aware navigation capability for 3D terrain crossing. Our system utilizes the reasoning and
motion planning ability of the VLM model, with a design of task decomposition and a closed-loop sub-task execution
module. While traditional navigation approaches (yellow) fail in reasoning 3D environment, our system (red) guides the
quadruped robot to cross the accessible intermediation towards the goal.

Abstract— The application of vision-language models (VLMs)
has achieved impressive success in various robotics tasks.
However, there are few explorations for these foundation models
used in quadruped robot navigation through terrains in 3D
environments. In this work, we introduce SARO (Space-Aware
Robot System for Terrain Crossing), an innovative system
composed of a high-level reasoning module, a closed-loop
sub-task execution module, and a low-level control policy. It
enables the robot to navigate across 3D terrains and reach
the goal position. For high-level reasoning and execution, we
propose a novel algorithmic system taking advantage of a
VLM, with a design of task decomposition and a closed-
loop sub-task execution mechanism. For low-level locomotion
control, we utilize the Probability Annealing Selection (PAS)
method to effectively train a control policy by reinforcement
learning. Numerous experiments show that our whole system
can accurately and robustly navigate across several 3D terrains,
and its generalization ability ensures the applications in diverse
indoor and outdoor scenarios and terrains. Appendix and Videos
can be found in project page: https://saro-vlm.github.io/.

I. INTRODUCTION

The athletic intelligence of animals is concentrated in their
understanding of complex wild environments and their ability
to reach invisible destinations. This significantly challenges the
capacity for 3D scene understanding and traversability across
various terrains. It should be considered as the potential advan-
tage for quadruped robot agents. Although much progress has
been made in specific locomotion skills [1], [2], the autonomy
of robots should be improved at the system level.

1IIIS, Tsinghua University, Beijing, China
2SEIEE, Shanghai Jiao Tong University, Shanghai, China
3CSE, Zhejiang University, Hangzhou, China
4GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA
5Shanghai Qi Zhi Institute, Shanghai, China
* These authors contributed equally to this work.
† Corresponding author. E-mail:hangzhao@mail.tsinghua.edu.cn

Vision-language models (VLMs) have shown advancements
in common sense reasoning and remarkable generalization
in vision tasks, significantly boosting the progress of robotic
learning [3]–[9]. However, VLMs suffer from the limitations
of training data perspectives and the lack of a memory
information bank, which is believed to curtail their usage in
robot navigation tasks. Our motivation originates from this
important question: How can we design a system to fully
activate the potential of VLMs’ visual common sense on
robots to enable them to observe and understand and travel
in the 3D world? In this work, we design a system called
SARO, composed of a high-level reasoning module, a close-
loop sub-task execute module, and a low-level control policy.
The system enhances the 3D reasoning, motion planning,
and locomotion ability of the robots. Our design uses zero-
shot VLM common sense reasoning to overcome the lack of
training data and utilizes the closed-loop sub-task execution
to invest a memory-free mechanism to transfer agents stage by
stage in the navigation process.

Besides, the low-level locomotion control policy needs to
be adaptable to different terrains and robust against diverse
environments. Traditional control methods such as SLIP [10],
VMC [11], MPC [12], [13] can handle some specific terrain
tasks, but they have poor robustness against complex real-
world situations. Adaptation learning [1] and teacher-student
framework [14] are employed to address the transferring from
simulation to real world. However, they are prone to significant
performance degradation when deployed in the real world.
In our work, we propose a novel method called Probability
Annealing Selection (PAS) to solve the Oracle policy transfer
problem caused by mimic learning. It comprehensively learns
the ability to cross various types of real-world 3D terrains.

We test our method across several different categories
of terrains and intermediations. In addition, we showcase
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Fig. 2: Overview of the SARO system. The robot needs to complete a goal-tracking task while autonomously navigating through
a 3D terrain. The pretrained vision-language foundation model (VLM) takes as input RGB images and prompts querying the 3D
environment perception to decompose the task into sub-tasks. After that, the system executes these sub-tasks in a closed-loop
taking advantage of VLM discriminator double-check. The well-designed sub-task execution module connects the high-level
VLM and the low-level control policy and receives depth image and stereo image information to help localization.

the capacity of our low-level locomotion policy in extra
experiments. Since the restricted view range of the front view
camera input, we define the task as goal-tracking with a simple
setting of only one intermediation chosen from “stair”, “ramp”,
“gap”, and “door” for each task in experiments. Our experiment
results demonstrate the generalization and common-sense
visual motion reasoning abilities of SARO in quadruped robot
3D navigation. Our method exhibits generalization ability and
robustness in real-world scenarios, as demonstrated in our real-
world videos.

In summary, our contributions are as follows:
1) We innovatively present SARO, a system that is composed

of a high-level reasoning module, a closed-loop sub-task
execution module, and a robust low-level control policy. This
novel system enhances ego-view 3D navigation for quadruped
robots.

2) We introduce a novel reinforcement learning-based
locomotion control policy Probability Annealing Selection
(PAS) to overcome various 3D terrain challenges.

3) We conduct experiments across extensive terrains. The
results demonstrate our system’s ability to complete our
specially defined goal-tracking task across 3D terrains.

II. RELATED WORKS

A. Foundation Models in Robotics
In recent years, foundation models [15]–[19], including

large language models (LLMs) and vision-language models
(VLMs), have achieved significant advancements. Further-
more, some of these foundation models have been adapted
to the domain of robotics [20]–[32]. Several works [23],
[33]–[35] have utilized open-vocabulary pretrained models
for robotic tasks, Others [3]–[5], [36], [37] have employed
powerful VLMs, such as GPT-4V, for robotics tasks. Moreover,

some researchers have attempted to apply foundation models
to quadruped robots. Saytap [38] uses large language models
(LLMs) to translate natural language commands into foot
contact patterns for quadrupedal robots. ViNT [39] trains a
universal policy from a large-scale visual navigation dataset
using the Transformer [40]. CognitiveDog [41] integrates a
Large Multi-modal Model (LMM) with a quadruped robot.
GeRM [42] trains a generalist model for quadruped robots
in vision-language tasks. QuadrupedGPT [43] and Common-
sense [9] utilize large models for movement in simple scenes.
Nevertheless, all these methods are only suitable for tasks
on planar surfaces and do not fully utilize the 3D terrain
capabilities of quadruped robots.

B. Locomotion Control of Quadruped Robots

Traditional locomotion control methods for quadruped
robots [10], [11], [44]–[46] is one way for locomotion control,
but they often suffer the unstable problem in real-world
deployment. Reinforcement learning has shown remarkable
capabilities in recent years [1], [14], [47]. They utilize
the privileged training paradigm to train quadruped robots
without extra sensors. Also, some work [48]–[52] integrate
proprioceptive and exteroceptive states to achieve agile loco-
motion. Mimic learning is frequently used in previous works.
Methods of adaptation learning [1], [2], [53] and teacher-
student framework learning [14], [54], [55] are used to solve
the sim-to-real transfer problem, but they suffer from high-
performance reduction during real deployment. Meanwhile,
some other works propose innovative methods to improve
locomotion efficiency. DayDreamer [56] learns a “world
model” to synthesize infinite interactions, while DreamWaQ
[57] implicitly infers terrain properties and adapts its gait
accordingly by learning a VAE model. Traditional control



methods are combined with deep reinforcement learning [58]–
[60] to accelerate training speed, but they do not fully utilize
privileged information in simulation with only one-stage
training. In our work, we propose a novel method to solve the
Oracle policy transfer problem without mimic learning, while
fully taking advantage of privileged information in simulation
with two-stage training.

III. METHOD
A. Task Definition

The task is defined as a goal-tracking task for the quadruped
robot to autonomously navigate through a 3D environment
with various terrains. A terrainT is composed of two platforms
P1, P2 and one intermediation I connecting two platforms
in 3D space. In the beginning, the robot is located on P1,
and the task is to reach a specified goal G on P2 defined as
(𝑥, 𝑦, 𝑧, 𝑦𝑎𝑤) relative to the robot’s starting position, combined
with a language description L of the goal. The robot needs
to cross intermediation I to reach the goal on platform
P2. The 3D intermediation in this work includes “stairs”,
“ramps”, “gaps”, and “doors”, which the robot does not take
extreme action to come across. The quadruped robot can only
access the sensors onboard, including proprioception, ego-
view RGB image, and depth image. In summary, the tasks can
be represented as:

Find the way and navigate through: {P1 →I → P2}
under the condition of G and L

As an example, in Fig. 1, the robot begins on the floor
(P1) in front of a higher platform (P2) and needs to get
the goal G located on the platform. The goal point is
“(3.0𝑚,0.0𝑚,0.4𝑚,0.0𝑟𝑎𝑑)”. The language instruction L is
“getting to the goal on the wooden box in front of the wall”.
We list all of our experiment scenario details in Section IV.

B. High-level Reasoning and Task Execution
Task Decomposition: Our system works as a state machine

and decomposes the multi-step navigation into a sub-task
sequence composed of movement actions and the ending
point by prompting the VLM. The prompt is based on the
task that defines the robot’s ability and instructs it to cross
the terrain. As illustrated in Fig. 2, we use the pre-trained
VLM to perform zero-shot inference on ego-view image
inputs. It first recognizes the intermediation I associated
with the task instruction L. After that, the VLM can further
generate the decomposed sub-task sequence. The sub-task is
defined as an (Action, Ending) pair. Action is one of [“move”,
“climb”]. Ending is one of [“facing intermediation”, “across
intermediation”, and “to the goal”]. The full prompts and
examples are shown in the Appendix A.1.

Sub-task Execution: We extensively explore the percep-
tion abilities of VLM to aid in fine-grained trajectory guidance
and judgment of sub-task states. As shown in Fig. 3, for each
sub-task, the VLM discriminator first judges whether the sub-
task is finished based on the Ending. If it is unfinished, a
velocity command will be sent to low-level policy based on

the Action and VLM’s language instruction. The predefined
execution workflow determines how to complete this Action
until the Ending point, which is expanded in detail in the
Appendix A.2. Both sub-task execution workflow and VLM
discriminator can judge the Ending point, but the system
will only be permitted to conduct the next sub-task if the
VLM discriminator outputs the ending signal, which we call
double-check. It is worth noting that one sub-task may take
several processes to execute because the low-level workflow
may not predict an accurate Ending point. For example,
if the intermediation is not completely within the field of
view, several adjustments are required to do center alignment.
This closed-loop module and double-check mechanism fully
leverage sensor input from the quadruped robot, enhancing the
robustness and safety of our system.

Subtask i

Command Action to Low-level Policy until Ending 

Process Done
Stop and wait

VLM Discriminator Double Check 

If unfinished

If finished

...

...

...

...

Subtask i+1
...

Fig. 3: After task decomposition, the system executes the
sub-tasks one by one. The double-check closed-loop module
improves the robustness of the system.
C. Low-level Locomotion Control Policy

We enable the quadruped robot to track expected linear
and angular velocities over various terrains with only one
policy. The reinforcement learning policy only trains on
proprioception, without any additional external perception
such as depth camera and Lidar.

Oracle Policy Training: In the first training step, we train an
oracle policy. All information serves as the policy observation,
including proprioception 𝒑𝑡 ∈ R45, privileged state 𝒔𝑡 ∈ R4,
and terrain information 𝒕𝑡 ∈ R187. The terrain information is
first encoded by terrain encoder 𝐸𝑡 into terrain latent 𝒕𝑙𝑡 ∈ R32.
Then it is concatenated with 𝒔𝑡 ∈ R4 into full latent state 𝒍 𝑡 ∈
R36. This accelerates the training convergence and enhances
the training stability. The input of the low-level network 𝐸𝑙𝑜𝑤

𝒐 ∈ R81 is composed of proprioception 𝒑𝑡 ∈ R45 and 𝒍 𝑡 ∈ R36.
The actor outputs the desired joint positions 𝒂𝑡 ∈ R12. The
critic is also an MLP, but it directly uses the concatenation of
three different types of information 𝒐𝑐 ∈ R236. Due to the use
of privileged information, the quadruped robot can quickly
and effectively learn locomotion skills on various terrains.
While training the Oracle policy, we also train a state estimator
network 𝐸𝑒 concurrently. Mean Squared Error (MSE) loss is
used to reconstruct the latent of privileged information 𝒍 𝑡 ∈
R36.

Partial Observation Policy Training: In the second train-
ing step, we train the estimator network and the low-level MLP
network jointly using the Probability Annealing Selection
(PAS) method. The input of the estimator is proprioception
𝒑𝑡 ∈ R45. After passing through the LSTM network, the
output is then fed into the MLP encoder to get the latent
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Fig. 4: Overview of the low-level locomotion control policy. In the first training step, we train an oracle policy using proprioception
𝒑𝑡 ∈ R45, privileged state 𝒔𝑡 ∈ R4, and terrain information 𝒕𝑡 ∈ R187. In the second training step, we use the probability annealing
selection (PAS) method to train the final actor network, which only uses proprioception as input. After the policy training process
is finished, we exclusively train a terrain estimator to classify whether the robot is on the plane or is climbing the intermediation.

state prediction 𝒑𝑡 ∈ R36. At the beginning of the second
training step, the estimator and the low-level MLP are copied
to initialize from the first training step. Then, the loss of
reinforcement learning is utilized to simultaneously optimize
both the estimator and the low-level MLP. Then, the PAS
method is used. Specifically, at the beginning, the latent state
vectors input to the lower-level MLP are mostly real values 𝒍 𝑡 ,
with a small portion of predicted values 𝒑𝑡 . As the training
iterations increase, the probability of selecting real values
gradually decreases, and the probability of selecting predicted
values gradually increases. Ultimately, only predicted values
are used. Specifically,

𝒑𝑡 = 𝐸𝑒 (𝒐𝑝
𝑡 ), (1)

𝒊𝑡 = Probability Selection (𝑷𝑡 , 𝒑𝑡 , 𝒍 𝑡 ), (2)
𝒂𝑡 = 𝐸𝑙𝑜𝑤 (𝒊𝑡 , 𝒐), (3)

Probability 𝑷𝑡 = 𝜶𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. (4)

To ensure consistency in the same continuous action, the
probability selection is based on the number of robots. Our
training method ensures the stability of the training process
and enhances the performance of the final policy. Training
details including problem definition, reward function, termi-
nation conditions, terrain curriculum, dynamic randomization,
network architecture, and hyper-parameters are shown in the
Appendix B.

IV. EXPERIMENTS
A. Experiment Setup

We deploy our method on Unitree A1 quadruped robot with
NVIDIA Jetson Xavier NX as the onboard computer. Also, we

use a laptop and a GPU server as the computation platform. The
low-level locomotion control policy runs on onboard Xavier
NX at 50 Hz.

A: upper RealSense D435i camera

B: Lower RealSense D435i camera C: Unitree A1 quadruped 
robot equipped with NVIDIA 
Jetson Xavier NX. 

D: Network cable for 
communication between 
quadruped robot and laptop.

Fig. 5: Robot setup for experiment.
We deploy two RealSense D435i cameras on the quadruped

robot, the upper one for VIO to get robot odometry, and the
lower one for high-level reasoning. The upper one takes stereo
images at a resolution of 640×480. The lower one takes an
aligned RGB-D image at a resolution of 848×480. We use
LLaVA-34B [61] as both vision language model and vision
language model discriminator, VINS-Fusion [62] as the VIO
algorithm. Detailed robot setup for experiment is shown in
Fig. 5. Based on ROS, we set up our communication system
as shown in Fig. 6. We use a Ubuntu 20.04 laptop as the
main computer, a GPU server with 8 NVIDIA RTX 3090
as the side computer, and NVIDIA Jetson Xavier NX as the
onboard computer. The messages from cameras are directly
sent to the laptop. We use the laptop to run the SLAM program
and the system’s main program. The GPU server runs the
LLaVA program and communicates RGB images and language
instructions with the laptop. The onboard Xavier NX receives
the velocity commands by the main program from the laptop



TABLE I: The success rate of high-level navigation in versatile real-world experiments. Gray ones indicate the success rates of
only crossing terrain sub-tasks (no need to get stop at the goal).

Intermediation Overall Stable Loc w/o Closed-Loop NoMaD LSTM Across Terrains ViNT

Stair 60% 88% 10% 0% 0% 70% 0%
Ramp 25% 67% 10% 0% 0% 50% 0%
Gap 45% 94% 20% 20% 0% 80% 0%
Door 30% 63% 15% 70% 0% 50% 0%

through ROS messages and runs the low-level control policy
to predict desired joint positions for PD control. Note that
we paste some rectangle decorations on the white wall of the
laboratory, which is only to provide feature points for the VIO
algorithm and improve its stability.

A1 Onboard 
Xavier NX

Laptop
(Main) Velocity 

Command 

Upper RealSense 
D435i

Joint Position

Lower RealSense 
D435i

Stereo Image, IMU

RGB Image, Depth Image

Low-level PD 
control 

GPU Server

RGB Image Language 
Instruction

Fig. 6: Communication system setup of robot deployment.

B. Results of High-level Reasoning
Indoor Experiments: To evaluate our crossing system,

experiments are conducted based on versatile routes in the
real world, shown in Fig 7. We test the robustness on
different terrains including stairs, ramps, gaps, and doors.
For every terrain, the goals are at various directions. 20
trials are conducted for each situation and we record the
success rate of the whole process, only crossing terrains
and stable localization, which means that the localization
module always works accurately, respectively as the evaluating
metrics. We compare our results with three baselines: naive
LSTM network, ViNT [39], and NoMaD [63]. We record a
real-world dataset containing 50 trajectories including routes
on the plain, across stairs, and through ramps, with a frame rate
of 15Hz and length of about 10 seconds. A naive baseline is
implemented, composed of a CNN image encoder, an LSTM
backbone, and an MLP decoder. We train this baseline on the
dataset for 500 epochs using MSE loss. We also collect the
topological maps and the goal images in the real world for
ViNT [39] to simulate our goal-pursing task. We implement
NoMaD [63] for terrain crossing tasks using its exploration
function. The results are shown in Table I.

We observe relatively good results for versatile intermedi-
ations, especially for stairs, which demonstrates the effective-
ness and robustness of our crossing system. The task definition
is much harder than NoMaD and ViNT since the starting point
is closer to the intermediations and it requires faster planning
and adjustment to achieve the correct position and direction,
which blocks the baselines from reacting well. Also, all three

baselines lack the 3D reasoning and planning capability as
SARO holds. It is worth noting that our overall success rate
relies heavily on the accuracy of our localization module.
Our ablations on crossing intermediation and the ideal stable
localization module show a large margin of improvement in all
of the situations. This encourages our valuable system design
and great cooperation of generalizable control policy and other
modules. Meanwhile, we point out that most of the localization
errors occur when the input images are blurred due to the
high-dynamic motion, especially for the ramps which makes
the quadruped robot lean upwards.

VLM actively participates in every step of the 3D navigation
task and demonstrates its strong power of common sense
reasoning and motion estimation. While several challenges,
such as transforming ego-view 2D image information into
3D environment interactions, arise in the application of
VLM, we manage to bridge the gap by designing sub-task
execution modules that leverage rich information from other
robot sensors. The entire system is capable of generalizing to
multiple 3D terrains and diverse environments. Additionally,
it can be robustly embedded in real-world quadruped robots.

Outdoor Experiments: Additionally, we test our system
outdoors to show the generalizing ability. As shown in Fig 7,
we spot that our framework can be easily extended to the
wild environment and the versatile 3D terrain conditions can
be covered by our robust perception, planning, and control
pipeline. More details can be referred to in our appended demo
videos.

C. Results of Low-level Locomotion
To further evaluate our proposed PAS method, we conduct

extra experiments on the lower-level locomotion control. We
select a variety of challenging terrains, including uneven
ground, stairs, ramps, and unseen terrains, to test the success
rate and speed tracking ratio. Both metrics are the higher the
better.

Simulation Results: For success rate, we conduct 4,096
independent experiments for each type of terrain. If the
robot reaches the edge of the terrain or is alive for over 20
seconds, it is marked as a success. The velocity tracking
ratio shows the performance for tracking velocity commands,
and we also conducted 4,096 experiments for each terrain.
First, we compare our method with several previous baselines
using only proprioception. The details of methods used for
comparison can be found in Appendix C.2. Results show
that our method significantly outperforms previous methods.
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Fig. 7: Indoor and outdoor 3D navigation experiment results on diverse terrains.

Both RMA (latent space) and the “teacher-student” framework
(action space) only utilize imitation learning in the second step
of training without reward feedback, and they perform worse
than those of pure blind training and concurrent training. Pure
blind training, which does not use privileged information for
training, performs relatively well on flat ground and simpler
terrains. But its performance drops rapidly once the terrain
becomes more complex. Concurrent training only uses partial
perceptual information, so it is difficult to estimate an accurate
latent state.

TABLE II: Comparison experiment results in simulation

Metric PAS(ours) RMA [1] IL [55] Blind Concurrent [64]

SR (Avg) 85.31% 49.30% 58.05% 77.34% 70.40%
L vel (Avg) 0.8790 0.6848 0.8029 0.8555 0.8330
A vel (Avg) 0.7815 0.5895 0.7370 0.7627 0.7349

We also conduct ablation experiments for different an-
nealing settings. Results show that the exponential annealing
with the base of 0.9998 performs the best in most scenarios.
Exponential annealing with an annealing probability of 0.9995
may be too rapid. No annealing results in the robot being
unable to adapt at the start of learning, necessitating a period
of re-exploration, during which a significant amount of the
oracle policy’s capabilities are lost. Furthermore, we find
that although cosine annealing intuitively follows a slow-fast
pattern, its performance is the worst, especially in terms of
angular velocity tracking ratio, which may be due to a rapid
collapse of the network at a certain point.

TABLE III: Ablation experiment results in simulation

Metric Exp 0.9998 Exp 0.9995 No anneal Cosine Linear

SR (Avg) 85.31% 83.60% 83.33% 83.26% 84.00%
L vel (Avg) 0.8790 0.8710 0.8687 0.8730 0.8715
A vel (Avg) 0.7815 0.7741 0.7733 0.7466 0.7660

Real-world Results: We conduct experiments across a

series of terrains. For experiments on each type of terrain,
we continuously conduct 20 trials. For each trial, if the robot
could start from the beginning, and reach the end without
falling or getting stuck, it is considered as a success. As the
results shown in Table IV, our robot can pass through terrains
blindly and is highly competitive with previous methods.

TABLE IV: Success rate results in real-world experiments

Terrain type PAS(ours) RMA IL Built-in MPC

Stair 100% 75% 80% 0%
Ramp 90% 70% 80% 55%
Rubble 95% 70% 75% 0%

Grassland 100% 80% 95% 60%
Unseen obstacle 95% 65% 80% 0%

V. CONCLUSION
We present a space-aware robot system (SARO) for vision

navigation in 3D environments. The high-level module utilizes
task decomposition and closed-loop sub-task execution mod-
ule to boost the 3D scene understanding and motion planning.
The low-level control policy PAS is designed as a novel
reinforcement learning method that efficiently learns a partial
policy from the oracle policy and facilitates the quadruped
robot crossing versatile 3D terrains. Our extensive experiments
in both simulator and real-world demonstrate the effectiveness
and robustness of the whole system as well as the locomotion
control policy.

For limitation, due to the high-frequency vibrations of the
quadruped robot bringing errors to IMU and blurring the
image, the current commonly used SLAM method is not as
stable as we expect, and it damages the reliability of our whole
system. In addition, we only deploy our system on short-term
simple tasks, which is limited by ego-view perception and lack
of memory. In the future, we believe that better perception and
localization approaches can benefit our pipeline. Topological
maps or semantic maps can be integrated with VLM to help
investigate more complex tasks.



APPENDIX

In Appendix, we introduce technical details of our system
implementation, training and experiments. The Appendix
includes three parts for each, as listed below:

• A. Details of High-level Reasoning and Task Ex-
ecution: the implementation details of our high-level
system, including the VLM prompts, sub-task set and
the deployed algorithm.

• B. Training Details of Low-level Locomotion Control
Policy: the training details of our low-level locomotion
control policy, including the problem definition, reward
function, training strategy and parameters.

• C. Extra Experiments Details of the Low-level Lo-
comotion: the supplementary experiment of our low-
level locomotion control policy, including the metrics,
comparison with baselines and ablation studies.

A. Details of High-level Reasoning and Task Execution

1) VLM Details and Prompts: We use pretrained LLaVA-
34B for VLM inference. The VLM takes RGB images at a
resolution of 848×480 and instruction prompts as input. The
prompts given for different stages are listed below:

1) Planning “Ignore anything on the wall. You are a robot
dog. The intermediation may be a stair, a ramp, a gap, or
a door frame. The task is task. First answer the question:
1. What is the only intermediation you need to cross or
climb to finish the task? Based on previous questions,
decompose this task into a sequence of subtasks. The
subtask is (Action, Ending). Action is one of [‘move’,
‘climb’]. The ending is one of [‘facing intermediation’,
‘across intermediation’, and ‘to the goal’]. Replace the
intermediation with the answer to question 1.”

2) Perception “Where is the intermediation? Answer in
[x0,y0,x1,y1] format, don’t say anything else.”

3) Discriminator “Is there any intermediation? Just an-
swer yes or no.” or “Is the task finished at current state?”

Note after the output of prompt 1, all the intermediation in
prompts will be replaced by the specific intermediation in
answer 1. One example output with a specific terrain can be
found in Fig. 2

2) Sub-task Set and Deployment Details: The sub-task is
defined as an (Action, Ending) pair. Action is one of [‘move’,
‘climb’], Ending is one of [‘facing intermediation’, ‘across
intermediation’, and ‘to the goal’]. In real deployments, we
find the VLM does not output irrational sub-tasks “climb
facing intermediation” and “climb to the goal”, so only four
pairs are used: “Move facing intermediation”, “Move across
intermediation”, “Move to the goal”, and “Climb across inter-
mediation”. The sub-task execution module can access sub-
task instructions from VLM, RGB-D images, odometry from
VIO SLAM, and output a velocity command (𝑉𝑥 ,𝑉𝑦 ,𝑉𝑦𝑎𝑤) to
the PAS control policy. The sub-tasks are executed in a closed
loop and double-checked by VLM. While one sub-task is Not
at the End Point judged by VLM, the system consistently
executes it.

(xl+xr)/2, (yl+yr)/2

RGB Image Aligned Depth Image

(X,Y,Z) in camera frame

Fig. 8: Illustration of the trajectory refinement module com-
bined with depth image.

Algorithm 1: “Move facing intermediation”. The VLM is
capable of detecting intermediations and outputting accurate
bounding boxes for them. Combining with a depth image input,
we can obtain the exact 3D position of the intermediation

by {𝑋,𝑌, 𝑍} = {
(𝑖− 𝑥0) · 𝑑𝑖 𝑗

𝑓𝑥
,
( 𝑗 − 𝑦0) · 𝑑𝑖 𝑗

𝑓𝑦
, 𝑑𝑖 𝑗 }, and output an

accurate sub-goal based on that, as shown in Fig. 8.
Algorithm 2: “Move across intermediation”. Move for-

ward to the sub-goal located at the same horizontal line as the
final goal.

Algorithm 3: “Move freely to goal”. Integrated with the
localization module, move freely to the final goal until the
distance between the robot and the sub-goal is less than 0.1m.

Algorithm 4: “Climb across intermediation”. The gen-
eralizable locomotion control policy consistently classifies
whether the robot is on the plane or is crossing an intermedia-
tion, which is discussed in detail in Section V-B.6. If the terrain
estimator identifies sudden changes from terrain to plane, the
“done” signal is thrown by the task execution module.

Algorithm 1 Move facing intermediation
Input: RGB image 𝐶; Aligned depth image 𝐷; Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

Query VLM for intermediation bounding box
{𝑥𝑙 , 𝑥𝑟 , 𝑦𝑙 , 𝑦𝑟 };
Obtain intermediation center in pixel {𝑥0, 𝑦0} = {(𝑥𝑙 +
𝑥𝑟 )/2, (𝑦𝑙 + 𝑦𝑟 )/2};
while Not 𝑥0 < 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

Obtain intermediation center in real 3D position

{𝑋,𝑌, 𝑍} = {
(𝑖− 𝑥0) · 𝑑𝑖 𝑗

𝑓𝑥
,
( 𝑗 − 𝑦0) · 𝑑𝑖 𝑗

𝑓𝑦
, 𝑑𝑖 𝑗 };

Transfer sub-goal {0, 𝑋,0} in robot frame to fixed world
frame;

while Distance error greater than 0.1m do
Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control

based on the sub-goal;
Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;

end while
Query VLM for intermediation bounding box

{𝑥𝑙 , 𝑥𝑟 , 𝑦𝑙 , 𝑦𝑟 };
Obtain intermediation center in pixel {𝑥0, 𝑦0} = {(𝑥𝑙 +

𝑥𝑟 )/2, (𝑦𝑙 + 𝑦𝑟 )/2};
end while



Algorithm 2 Move across intermediation
Input: Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

while Not invisible of the intermediation judged by VLM
discriminator do

Obtain final goal 𝑋,𝑌, 𝑍 in robot frame;
Transfer sub-goal {𝑋,0,0} in robot frame to fixed world

frame;
while Distance error greater than 0.1m do

Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control
based on the sub-goal;

Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;
end while

end while

Algorithm 3 Move freely to the goal
Input: Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

while Not finished the task defined by language L judged
by VLM discriminator do

Obtain final goal {𝑋,𝑌, 𝑍};
while Distance error greater than 0.1m do

Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control
based on the final goal;

Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;
end while

end while

Algorithm 4 Climb across intermediation
Input: Terrain Classification; Odometry 𝑂
Output: Velocity command 𝑐𝑚𝑑𝑣𝑒𝑙;

while Not invisible of the intermediation judged by VLM
discriminator do

𝑇𝑒𝑟𝑟𝑎𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝐶𝑜𝑢𝑛𝑡 = 0;
while 𝐶𝑜𝑢𝑛𝑡 < 2 do

Calculate command velocity 𝑐𝑚𝑑𝑣𝑒𝑙 by PD control
to keep moving and facing straight;

Send 𝑐𝑚𝑑𝑣𝑒𝑙 to PAS control policy;
𝐶𝑜𝑢𝑛𝑡 = 𝐶𝑜𝑢𝑛𝑡 + 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ⊕

𝐿𝑎𝑠𝑡 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛;
end while

end while

B. Training Details of Low-level Locomotion Control Policy

We use the IsaacGym simulator [65] for policy training and
deploy 4,096 quadruped robot agents. The training process
has two steps as shown in Fig. 4. Both steps use the Proximal
Policy Optimization (PPO) [66] method, and both are trained
in 40,000 iterations of exploration and learning. The control
policy within the simulator operates at a frequency of 50 Hz.

1) Problem Definition: We decompose the locomotion
control problem into discrete locomotion dynamics. The
environment can be fully represented as 𝒙𝑡 at each time step 𝑡,
with a discrete time step 𝑑𝑡 = 0.02𝑠.

State Space: The entire training process includes the fol-
lowing three types of observation information: proprioception
𝒑𝑡 ∈ R45, privileged state 𝒔𝑡 ∈ R4, and terrain information
𝒕𝑡 ∈ R187. Proprioception 𝒑𝑡 ∈ R45 contains gravity vector
𝒈𝑝
𝑡 ∈ R3 and base angular velocity 𝝎𝑝

𝑡 ∈ R3 from IMU,
velocity command 𝒄𝒕 =

(
𝑣cmd
𝑥 , 𝑣cmd

𝑦 ,𝜔cmd
𝑧

)
∈R3, joint positions

𝜽 𝑝
𝑡 ∈ R12, joint velocities 𝜽′ 𝑝𝑡 ∈ R12, last action 𝒂𝑝

𝑡−1 ∈ R12.
Privileged state 𝒔𝑡 ∈ R4 contains base linear velocity 𝒗𝑝𝑡 ∈
R3 and the ground friction 𝝁𝑝

𝑡 ∈ R1. Note that although
the base linear velocity can be obtained by integrating the
acceleration data from IMU, it has significant errors and
accumulates errors over time, hence it cannot be used in the real
deployment. Terrain information contains height measurement
𝒊𝑒𝑡 ∈ R187, which includes 187 height values sampled from
the grid surrounding the robot, refer to the yellow point
grid surrounding the robot in Fig. 4. We have two training
steps as shown in Fig. 4. Policy in the first step uses all
information 𝒑𝑡 ∈ R45, 𝒔𝑡 ∈ R4, and 𝒕𝑡 ∈ R187 as observation.
In the second step and in the real deployment, the policy uses
only proprioception 𝒑𝑡 ∈ R45 as observation.

Action Space: The policy outputs the target positions of
12 joints as the action space 𝒂𝑡 ∈ R12. During real robot
deployment, the expected joint positions are sent to the lower-
level joint PD controllers (𝐾𝑝 = 40,𝐾𝑑 = 0.5) for execution
via the ROS (Robot Operating System) platform.

2) Reward Function: The reward function is composed
of four components: task reward 𝑟𝑇𝑡 , survival reward 𝑟𝐴𝑡 ,
performance reward 𝑟𝐸𝑡 , and style reward 𝑟𝑆𝑡 . And the total
reward is the sum of them 𝑟𝑡 = 𝑟

𝑇
𝑡 + 𝑟𝐴𝑡 + 𝑟𝐸𝑡 + 𝑟𝑆𝑡 . Specifically,

the task reward mainly consists of the tracking of linear and
angular velocities, formulated as the exponent of the velocity
tracking error; the alive reward gives a reward to the robot for
each step to encourage it not to fall over; the performance
reward includes energy consumption, joint velocity, joint
acceleration, and angular velocity stability; the style reward
includes the time the feet are off the ground and the balance
of the forces on the feet, with the hope that the robot can walk
with a more natural gait. The details of each reward function
are shown in Table V.

3) Termination Conditions: We terminate the episode
when the robot base’s roll angle (the rotation around the
forward axis) exceeds 0.8 rad, the robot base’s pitch angle (the
rotation around the vertical axis) exceeds 1.0 rad, or the robot’s
position does not change significantly for over 1 second. If the
robot does not trigger any termination conditions within 20
seconds or successfully arrives at the edge of one terrain, we
also finish this episode and mark this episode as time out.

4) Terrain Curriculum: Previous work [67] has demon-
strated that training quadruped robot on various terrains can re-
sult in high generalizability and robustness to different ground
surfaces. Due to the instability of reinforcement learning in
its early stages, it is challenging for robots to directly acquire
locomotion skills on complex terrains. Therefore, we employ
and refine the “terrain curriculum” approach proposed in [68].
Specifically, we create 80 different terrains, distributed across
an 8 × 10 grid. The terrains are divided into 8 categories,



TABLE V: Reward Function

Type Item Formula Weight

Task Lin vel exp
(
−∥vdes

𝑡 ,𝑥𝑦 −v𝑡 ,𝑥𝑦 ∥2/0.25
)

3.0

Ang vel exp
(
−∥𝜔des

𝑡 ,𝑧 −𝜔𝑡 ,𝑧 ∥2/0.25
)

1.0

Safety Alive 1 1.0

Performance

Energy ∥ ¤q∥2 · ∥𝜏∥2 −1×10−6

Joint vel ∥ ¤q∥2 −0.002
Joint acc ∥ ¥q∥2 −2×10−6

Ang vel Stability (∥𝜔𝑡 ,𝑥 ∥2 + ∥𝜔𝑡 ,𝑦 ∥2) −0.2

Style Feet in air
∑3

𝑖=0
(
t𝑎𝑖𝑟 ,𝑖 −0.3

)
+10 ·min

(
0.5− t𝑎𝑖𝑟 ,𝑖 ,0

)
0.05

Balance ∥𝐹 𝑓 𝑒𝑒𝑡 ,0 +𝐹 𝑓 𝑒𝑒𝑡 ,2 −𝐹 𝑓 𝑒𝑒𝑡 ,1 −𝐹 𝑓 𝑒𝑒𝑡 ,3∥2 −2×10−5

with each type ranging from easy to difficult, consisting of
10 variations. Each terrain measures 8 meters in length and
width. The first category consists of ascending stairs, with
stair heights uniformly increasing from 0 to 0.2 meters, and
a fixed stair width of 0.3 meters, designed for training in
climbing stairs continuously. The second category features
descending stairs, with stair heights uniformly increasing
from 0 to 0.2 meters, and a fixed stair width of 0.3 meters,
intended for training in descending stairs continuously. The
third category comprises ascending platforms, with platform
heights uniformly increasing from 0.16 to 0.22 meters, and
platform widths varying randomly from 0.8 to 1.5 meters,
used for training to step up onto higher platforms. The fourth
category includes descending platforms, with platform heights
uniformly increasing from 0.16 to 0.22 meters, and platform
widths varying randomly from 0.8 to 1.5 meters, for training
to jump down from higher platforms. The fifth category is
for ascending ramps, with ramp angles uniformly increasing
from 0 to 30 degrees, aimed at training for climbing up ramps.
The sixth category is for descending ramps, with ramp angles
uniformly increasing from 0 to 30 degrees, aimed at training
for descending ramps. The seventh category consists of flat
ground with no obstacles, for training in walking on level
surfaces. The eighth category is rough terrain, with the addition
of Perlin noise with amplitudes uniformly increasing from 0
to 0.15 meters, for training on uneven surfaces such as rocky
roads.

5) Dynamic Randomization: To enhance the robustness
and reduce the gap between the simulation and reality, we have
a series of randomizations including the mass, the center of
gravity position, the initial joint positions, the motor strength,
and the coefficient of friction, all of which are subject to
random variation within a preset range. Details are in Table VI.

In addition, the observation information obtained by the
robot’s sensors is also added with random Gaussian noise to
simulate the sensor errors that may occur in a real environment.
Details are in Table VII.

Furthermore, we randomly change the robot’s velocity
commands every 5 seconds and apply random external forces
to the robot every 9 seconds.

TABLE VI: Dynamic randomization

Parameters Range Unit

Base mass [0, 3] 𝑘𝑔

Mass position of X axis [-0.2, 0.2] 𝑚

Mass position of Y axis [-0.1, 0.1] 𝑚

Mass position of Z axis [-0.05, 0.05] 𝑚

Friction [0, 2] -
Initial joint positions [0.5, 1.5] ×nominal value 𝑟𝑎𝑑

Initial base velocity [-1.0, 1.0] (all directions) 𝑚/𝑠
Motor strength [0.9, 1.1] ×nominal value -

TABLE VII: Gaussian noise

Observation Gaussian Noise Amplitude Unit

Linear velocity 0.05 𝑚/𝑠
Angular velocity 0.2 𝑟𝑎𝑑/𝑠

Gravity 0.05 𝑚/𝑠2
Joint position 0.01 𝑟𝑎𝑑

Joint velocity 1.5 𝑟𝑎𝑑/𝑠

6) Terrain Classification: After finishing the training pro-
cess of the PAS control policy, we freeze all the network
weight in the PAS control policy and add head to output a
boolean terrain classification. The input of the network is 𝒑𝑡 ,
𝒔𝑡 , 𝒕𝑡 , and only to predict robot is on the plane or not (on the
intermediation). We use BCE Loss as the loss function.

7) Network Architecture: In the first step of training, the
terrain encoder 𝐸𝑡 and the low-level MLP 𝐸𝑙𝑜𝑤 are both
multilayer perceptrons (MLPs). In the second step of training,
the estimator consists of a recurrent neural network (RNN)
and a multilayer perceptron (MLP), with the type of recurrent
neural network being a Long Short-Term Memory network
(LSTM). The specific details of the network are shown in
Table VIII.

TABLE VIII: Details of the network architecture

Network Input Hidden layers Output

𝐸𝑡 (MLP) 𝒕𝑡 [128, 64] 𝒕𝑙𝑡
𝐸𝑙𝑜𝑤(MLP) 𝒑𝑡 , 𝒔𝑡 , 𝒕𝑡 [512, 256, 128] 𝒂𝑡

Estimator LSTM 𝒑𝑡 [256, 256] 𝒉𝑡

Estimator MLP 𝒉𝑡 [256, 128] 𝒑𝑡
Critic(MLP) 𝒑𝑡 , 𝒔𝑡 , 𝒕𝑡 [512, 256, 128] 𝑽 𝑡

Terrain Estimator (MLP) 𝒑𝑡 , 𝒔𝑡 , 𝒕𝑡 [256, 128] 𝒄𝑡



Exponential probability annealing Cosine probability annealing Linear probability annealing

Fig. 9: Annealing schedule of different settings. Exponential annealing is fast initially and then slows down, cosine annealing is
slow initially and then speeds up, and linear annealing is uniform all the process.

8) Hyperparameters: The hyperparameters of the PPO
algorithm are shown in the Table. IX:

TABLE IX: PPO Hyperparameters

Hyperparameter Value

clip min std 0.05
clip param 0.2
desired kl 0.01

entropy coef 0.01
gamma 0.99

lam 0.95
learning rate 0.001

max grad norm 1
num mini batch 4

num steps per env 24

C. Extra Experiments Details of the Low-level Locomotion
1) Metric of Velocity Tracking Ratio:

Linear velocity tracking ratio = exp(−
∥𝑣𝑥,𝑦 − 𝑣target

𝑥,𝑦 ∥2
2

0.25
),

Angular velocity tracking ratio = exp(−
∥𝜔yaw −𝜔target

yaw ∥2
2

0.25
).

2) Comparison Experiments:
• RMA [1]: A 1D-CNN is used as an adaptation module,

employing asynchronously. The teacher-student training
framework is used.

• IL [55]: The first step of training is the same, the second
step of training employs the teacher-student framework
for imitation learning. The network architectures are the
same.

• Built-in MPC: The built-in Model Predictive Control
(MPC) controller on the Unitree A1 robot (only in
physical experiments).

• Blind: The network architecture is the same as that in the
second step of training. Trained only using proprioception
directly in one step.

• Concurrent [64]: The policy was trained concurrently
with a state estimation network. The training process did
not include any input regarding the terrain.

3) Ablation Experiments:
• Exp 0.9998: The selection probability decreases expo-

nentially, with a base of 0.9998.
• Exp 0.9995: The selection probability decreases expo-

nentially, with a base of 0.9995.
• No anneal: The selection probability is set to zero from

the beginning, and the predicted hidden state values are
used exclusively.

• Cosine: The selection probability decreases in the shape
of the cosine function on the interval [0, 𝜋]. The rate of
probability decrease is initially slow and then accelerates.

• Linear: The selection probability decreases in a linear
function. The probability decreases uniformly.

Specifically, the annealing schedule of exponent, cosine, and
linear is shown in Fig. 9.
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